Metric properties for p-adic Oppenheim series expansions
نویسندگان
چکیده
منابع مشابه
p-ADIC PROPERTIES OF MODULAR SHIFTED CONVOLUTION DIRICHLET SERIES
Ho stein and Hulse recently introduced the notion of shifted convolution Dirichlet series for pairs of modular forms f1 and f2. The second two authors investigated certain special values of symmetrized sums of such functions, numbers which are generally expected to be mysterious transcendental numbers. They proved that the generating functions of these values in the h-aspect are linear combinat...
متن کاملON p-ADIC POWER SERIES
We obtained the region of convergence and the summation formula for some modified generalized hypergeometric series (1.2). We also investigated rationality of the sums of the power series (1.3). As a result the series (1.4) cannot be the same rational number in all Zp. 1991 Mathematics Subject Classification: 40A30,40D99
متن کاملGOOD PRODUCT EXPANSIONS FOR TAME ELEMENTS OF p-ADIC GROUPS
We show that, under fairly general conditions, many elements of a p-adic group can be well approximated by a product whose factors have properties that are helpful in performing explicit character computations.
متن کاملTHE METRIC THEORY OF p−ADIC APPROXIMATION
Abstract. Metric Diophantine approximation in its classical form is the study of how well almost all real numbers can be approximated by rationals. There is a long history of results which give partial answers to this problem, but there are still questions which remain unknown. The Duffin-Schaeffer Conjecture is an attempt to answer all of these questions in full, and it has withstood more than...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2004
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa112-3-3